
ARP Request Support
Make it work the first time

Wed, May 21, 1997

When using Internet Protocols (IP), one must use the Address Resolution Protocol (ARP) to obtain a 
network physical address given a target IP address. Replies from ARP requests are cached in an ARP 
table so that ARP requests don't have to be performed too often. After some time, an ARP table entry is 
normally flushed, so that the next time it is necessary to send to that IP address, a new ARP request 
must be used. Although an IP implementation may hold back datagrams to be sent to a target IP 
address until it has obtained the hardware address, it is not required to do so. In many 
implementations, when faced with sending a datagram to a target IP address on the local network, the 
system sends an ARP request instead of the message, hoping that a high level retry will subsequently 
find a physical network address in the cache so that the datagram can be delivered. The IRM 
implementation of IP was designed to work in just this way. This note describes a method of 
implementing support for delaying a datagram until an ARP reply has been received so that ARP 
requests will occur automatically as needed without omitting the first datagram.

IRM Networking Background
IRM network support has had a long history. Network software organization in the preceding 

VME local station implementation even preceded IP support. It is designed around the communication 
of messages, as distinct from frames or datagrams. In both Classic and Acnet protocols, multiple 
messages that target the same node are concatenated into single frames or datagrams as can fit. (In 
some cases, messages cannot be combined, say in the case that a message is really the entire contents 
of a UDP datagram.) The concatenation of messages is handled by low level network code that is 
invoked after a network queue, one per network, has been loaded with pointers to network message 
blocks. Concatenation works with consecutively queued messages that target the same node and, in 
the case of UDP, the same node/port, or socket. Much of a front end's network communication 
consists of replies to data requests. A linked list of all outstanding data requests is maintained in an 
order such that multiple requests from the same node are grouped together. This scheme increases the 
likelihood that reply messages to multiple data requests from the same node that are due at the same 
time will be combined into a common frame or datagram for delivery. Often a number of IRMs are 
logically connected through a data server node, so that the chance of having multiple requests 
stemming from a common node is even more likely. Concatenation, of course, improves the efficiency 
of network utilization and is therefore deemed a "good thing."

The support for queuing all network messages is handled by a common routine called OUTPQX. It has 
the job of placing the pointer to a network message block into an OUTPQ ("output pointer queue") 
according to the target network. The target network is determined by the destination node# word 
found in the message block. Ranges of node#s target different networks, and OUTPQX knows all about 
these ranges. For examples, see the following:

Node# (hex) Network
000x–00Ex token ring via Acnet logical node table
00Fx multicast raw
01xx–03xx token ring raw
04xx token ring raw
05xx–07xx token ring raw or ethernet IP via DNS
08xx token ring raw via token ring/ethernet bridge
09xx–10xx token ring IP or ethernet IP
09Fx multicast IP
7Axx arcnet raw
8xxx ethernet raw
6xxx token ring UDP socket
Exxx ethernet UDP socket

The range 05xx–07xx has a special significance. This range may imply use of token ring or ethernet, 
and it may be raw or IP. Node#s in this range will be sent via IP if the local node's global "broadcast" 



node# is in the range 09xx. (The "broadcast" node# is usually a multicast node# this is used to target 
requests that must be fulfilled by contributions from more than one other node, or to target Classic 
protocol device name lookup requests.) To get the IP address, the IP Node Address Table IPNAT is 
consulted that holds cached IP addresses that are derived from the local Domain Name Server via the 
local application DNSQ. All current IRMs are configured with a "broadcast" node of 09Fx. The choice of 
ethernet or token ring is made depending on CPU board and whether IP is to be used. On an MVME162 
board, ethernet is always used for IP; ethernet is also used for non-IP (raw) when there is no token ring 
interface present. In practice, IRMs use ethernet on IP. MVME133 board-based systems use token ring, 
either IP or raw. Only a 162 board system can use both token ring and ethernet, and it will always use 
ethernet for IP.

IP communications is based upon a socket, which specifies an IP address and a UDP port#. (ICMP and 
IGMP effectively use a zero port#.) The low 12 bits of the socket node# in the above table refer to an 8-
bit index into the ARP table and a 4-bit port# index. Each ARP table entry in active use has an 
associated port# block that can contain up to 15 active port#s from that node. In this way, a single 
word used as a target node# encodes a UDP socket. There are 254 ARP table entries available for 
sockets in active use, each of which can deal with up to 15 active UDP port#s.

New scheme for handling ARP requests
The networking support in IRMs has always been "in a hurry." An IRM is a front end that 

adheres to real-time performance. The notion of holding up network communications with other 
nodes while awaiting an ARP reply is not consistent with realtime functionality. As a rule to be 
followed, it's "ok" to hold up messages that are to be sent to a target node for which an ARP request 
must be sent, but it's not "ok" to hold up messages to be sent to other nodes. The new scheme honors 
this rule.

New code was added to the OUTPQX routine to detect the case that an ARP request will frustrate 
delivery of a message using IP, if the message were allowed to pass on to the network software that 
builds frames. In such a case, an ARP request message is broadcast to the network, a ptr to the 
message block is queued in a data structure linked with the corresponding ARP table entry, and 
success is returned to the caller, implying that the message block has been "queued to the network." 
When the ARP reply is received, often within a few milliseconds, and the hardware address found 
therein is deposited into the corresponding ARP table entry, all the queued message block ptrs are 
passed through OUTPQX again, this time with assurance that they will really be queued to the network. 
If no ARP reply is forthcoming, after a couple of seconds, the message ptrs are passed through OUTPQX 
in such a way that they are queued to the appropriate OUTPQ, but they are marked so that the lower 
level network frame-building software will ignore them. As a result, they can still be handled by the 
Queue Monitor task, which has the responsibility of freeing blocks that are no longer needed 
following completion of transmission, or of marking them no longer busy so they are available for 
subsequent retry use.

An ARP queue block that is allocated to house the queued message block ptrs is large enough to hold 
13 ptrs. If more are needed, another ARP queue block is allocated and linked to the first, so that there 
is no real limit to the number of messages that can be queued awaiting an ARP reply.

To implement this new ARP queue support, changes were made to OUTPQX as described above, to the 
IPARP suite of routines that support access to the ARP table, and to the SNAP Task, which handles ARP 
replies.

ARP Request Support p. 2


